21 results
(View BibTeX file of all listed publications)

**Probabilistic Solutions To Ordinary Differential Equations As Non-Linear Bayesian Filtering: A New Perspective**
*ArXiv preprint 2018*, arXiv:1810.03440 [stat.ME], October 2018 (article)

**Kernel Recursive ABC: Point Estimation with Intractable Likelihood**
*Proceedings of the 35th International Conference on Machine Learning*, pages: 2405-2414, PMLR, July 2018 (conference)

**Convergence Rates of Gaussian ODE Filters**
*arXiv preprint 2018*, arXiv:1807.09737 [math.NA], July 2018 (article)

**Counterfactual Mean Embedding: A Kernel Method for Nonparametric Causal Inference**
*Workshop on Machine Learning for Causal Inference, Counterfactual Prediction, and Autonomous Action (CausalML) at ICML*, July 2018 (conference)

**Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences**
*Arxiv e-prints*, arXiv:1805.08845v1 [stat.ML], 2018 (article)

**Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients**
In *Proceedings of the 35th International Conference on Machine Learning (ICML)*, 2018 (inproceedings) Accepted

**Counterfactual Mean Embedding: A Kernel Method for Nonparametric Causal Inference**
*Arxiv e-prints*, arXiv:1805.08845v1 [stat.ML], 2018 (article)

**Model-based Kernel Sum Rule: Kernel Bayesian Inference with Probabilistic Models**
*Arxiv e-prints*, arXiv:1409.5178v2 [stat.ML], 2018 (article)

**A probabilistic model for the numerical solution of initial value problems**
*Statistics and Computing*, Springer US, 2018 (article)

**Analytical incorporation of fractionation effects in probabilistic treatment planning for intensity-modulated proton therapy**
*Medical Physics*, 2018 (article)

**Probabilistic Approaches to Stochastic Optimization**
Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

**Large sample analysis of the median heuristic**
2018 (misc) In preparation

**Probabilistic Ordinary Differential Equation Solvers — Theory and Applications**
Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

**Automatic LQR Tuning Based on Gaussian Process Optimization: Early Experimental Results**
*Machine Learning in Planning and Control of Robot Motion Workshop at the IEEE/RSJ International Conference on Intelligent Robots and Systems (iROS)*, pages: , , Machine Learning in Planning and Control of Robot Motion Workshop, October 2015 (conference)

**Probabilistic Interpretation of Linear Solvers**
*SIAM Journal on Optimization*, 25(1):234-260, 2015 (article)

**Inference of Cause and Effect with Unsupervised Inverse Regression**
In *Proceedings of the 18th International Conference on Artificial Intelligence and Statistics*, 38, pages: 847-855, JMLR Workshop and Conference Proceedings, (Editors: Lebanon, G. and Vishwanathan, S.V.N.), JMLR.org, AISTATS, 2015 (inproceedings)

**Probabilistic Line Searches for Stochastic Optimization**
In *Advances in Neural Information Processing Systems 28*, pages: 181-189, (Editors: C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama and R. Garnett), Curran Associates, Inc., 29th Annual Conference on Neural Information Processing Systems (NIPS), 2015 (inproceedings)

**A Random Riemannian Metric for Probabilistic Shortest-Path Tractography**
In *18th International Conference on Medical Image Computing and Computer Assisted Intervention*, 9349, pages: 597-604, Lecture Notes in Computer Science, MICCAI, 2015 (inproceedings)

**Probabilistic numerics and uncertainty in computations**
*Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences*, 471(2179), 2015 (article)

**Bayesian Quadratic Reinforcement Learning**
NIPS Workshop on Probabilistic Approaches for Robotics and Control, December 2009 (poster)

**Expectation Propagation on the Maximum of Correlated Normal Variables**
Cavendish Laboratory: University of Cambridge, July 2009 (techreport)