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Figure 1.6: Muscle-based robotic arm serving as a
testbed for Learning for Control. While it offers unique
possibilities in terms of high accelerations, extreme
speeds, and variable stiffness actuation, classical control
methods are unable to unlock these abilities.

Control of complex plants or systems, espe-
cially robots actuated by pneumatic artificial
muscles, is a challenging task due to nonlinear-
ities, hysteresis effects, massive actuator delay
and unobservable dependencies such as tempera-
ture. Such plants and robots require much more
from the control than classical methods can de-
liver. Therefore, we aim to develop novel meth-
ods for learning control that can deal with high-
speed dynamics and muscular actuation.

Highly dynamic tasks that require large accel-
erations and precise tracking usually rely on ac-
curate models and/or high gain feedback. While
kinematic optimization allows for efficient rep-
resentation and online generation of hitting tra-
jectories, learning to track such dynamic move-
ments with inaccurate models remains an open
problem. To achieve accurate tracking for such
tasks in a stable and efficient way, we have pro-
posed a series of novel adaptive Iterative Learn-
ing Control (ILC) algorithms that are imple-
mented efficiently and enable caution during
learning [6].

Muscular systems offer many beneficial prop-

1 Empirical Inference

erties to achieve human-comparable perfor-
mance in uncertain and fast-changing tasks [244].
For example, muscles are backdrivable and pro-
vide variable stiffness while offering high forces
to reach high accelerations. Nevertheless, these
advantages come at a high price as such robots
defy classical approaches for control. We have
built a muscular robot system to study how to ac-
curately control musculoskeletal robots by learn-
ing control. We have shown how probabilistic
forward dynamics models can be employed to
control complex musculoskeletal robots on an
antagonistic pair of pneumatic artificial mus-
cles using only one-step-ahead predictions of
the forward model and incorporating model un-
certainty.

In addition, we have continued to work on
reinforcement learning problems, at the intersec-
tion of control and machine learning. We have
extended several approaches in reinforcement
learning for continuous control (NAF, Q-Prop,
IPG, TDM) to handle function approximations
with significantly improved sample efficiency
[131, 148, 174, 179, 219]. In [177], we have
shown that our approach scales to learning a
door opening task. Aside from fundamental al-
gorithmic problems such as sample efficiency
and stability, we also proposed algorithms that
enable learning on real-world robots with less hu-
man interventions during learning. In [147], we
propose the Leave No Trace (LNT) algorithm
that significantly reduced the number of hard
resets required during learning, paving a path
toward autonomous, reset-free learning in real
environments. Lastly, we made a contribution
to the field of hierarchical reinforcement learn-
ing with the HIRO algorithm [106], a scalable
off-policy HRL algorithm with substantially im-
proved sample efficiency on difficult continuous
control benchmarks over previous methods.

More information: https://ei.is.mpg.de/project/learning-4-control
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