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Kernel methods

Figure 1.2: Overview of the application of kernel mean embedding in [43]. Together with the reduced set (RS)
techniques to limit the complexity of the RKHS expansion, the kernel mean embedding is used to approximate the
embedding of the functional of random variables Z = f(X,Y ).

A Hilbert space embedding of distributions
(KME)—which generalizes the feature map of
individual points to probability measures—has
emerged as a powerful machinery for probabilis-
tic modeling, machine learning, and causal dis-
covery. The idea behind this framework is to map
distributions into a reproducing kernel Hilbert
space (RKHS) endowed with a kernel k. It en-
ables us to apply RKHS methods to probability
measures and has given rise to a great deal of re-
search and novel applications of kernel methods.

Given an i.i.d. sample x1, x2, . . . , xn from
P, the most natural estimate of the embedding
µP = EP[k(X, ·)] is an empirical average µ̂P =
(1/n)

∑n
i=1 k(xi, ·). In [35, 370], we showed

that this estimator is not optimal in a certain
sense. Inspired by James-Stein estimator, we
proposed the so-called kernel mean shrinkage
estimators (KMSEs) which improves upon the
standard estimator. A suitable explanation for
the improvement is a bias-variance tradeoff: the
shrinkage estimator reduces variance substan-
tially at the expense of a small bias. In addition,
we presented a class of estimators called spectral
shrinkage estimators in [395] which also incorpo-
rates the RKHS structure via the eigenspectrum
of the empirical covariance operator. Our empir-
ical studies suggest that the proposed estimators
are very useful for “large p, small n” situations
(e.g. medical data, gene expression analysis, and
text documents).

A natural application of KME is in testing for
similarities between samples from distributions.
We refer to the distance between two distribu-
tion embeddings as the maximum mean discrep-
ancy (MMD). We have formulated a two-sample
test [142] (of whether two distributions are the
same), and showed that the independence test (of
whether two random variables observed together

are statistically independent) is a special case.
A further application of the MMD as indepen-
dence criterion is in feature selection, where we
maximize dependence between features and la-
bels [143]. We have further developed alternative
independence tests based on space partitioning
approaches and classical divergence measures
(such as the `1 distance and KL-divergence)
[268]. Lastly, we also constructed the test for
non-i.i.d. data such as time-series in [441].

Given that the MMD depends on the particular
kernel that is chosen, we proposed two kernel se-
lection strategies [494], the earlier one relying on
a classification interpretation of the MMD, and
the later one explicitly minimizing the probabil-
ity of Type II error of the associated two-sample
test (that is, the probability of wrongly accepting
that two unlike distributions are the same, given
samples from each).

We have also used the KME to develop a vari-
ant of an SVM which operates on distributions
rather than points [478], permitting modeling
of input uncertainties. One can prove a gener-
alized representer theorem for this case, and in
the special case of Gaussian input uncertainties
and Gaussian kernel SVMs, it leads to a multi-
scale SVM, akin to an RBF network with vari-
able widths, which is still trained by solving a
quadratic optimization problem. In [356], we ap-
plied this framework to perform bivariate causal
inference between X and Y as a classification
problem on joint distribution P(X,Y ). Another
interesting application is in domain adaptation
[407, 676]. This idea has also been extended to
develop a variant of One-class SVM that oper-
ates on distributions, leading to applications in
group anomaly detection [415].

A recent application uses kernel means in visu-
alization. When using a power-of-cosine kernel

Max Planck Institute for Intelligent Systems, Stuttgart · Tübingen | Research and Status Report 2010 – 2015 | Part I



151 Empirical Inference
1.2 Research Projects

for distributions on the projective sphere, the
kernel mean can be represented as a symmet-
ric tensor. In the context of diffusion MRI, this
permits an efficient visual and quantitative anal-
ysis of the uncertainty in nerve fiber estimates,
which can inform the choice of MR acquisition
schemes and mathematical models [110, 388].

A natural question to consider is whether the
MMD constitutes a metric on distributions, and
is zero if and only if the distributions are the
same. When this holds, the RKHS is said to be
characteristic. We have determined necessary
and sufficient conditions on translation invari-
ant kernels for injectivity, for distributions on
compact and non-compact subsets of Rd [253]:
specifically, the Fourier transform of the ker-
nel should be supported on all of Rd. Gaus-
sian, Laplace, and B-spline kernels satisfy this
requirement. The MMD is a member of a larger
class of metrics on distributions, known as the
integral probability metrics (IPMs). In [16, 4],
we provide estimates of IPMs on Rd which are
taken over function classes that are not RKHSs,
namely the Wasserstein distance (functions in the
unit Lipschitz semi-norm ball) and the Dudley
metric (functions in the unit bounded Lipschitz
norm ball), and establish strong consistency of
our estimators. Comparing the MMD and these
two distances, the MMD converges fastest, and
at a rate independent of the dimensionality d of
the random variables – by contrast, rates for the
classical Wasserstein and Dudley metrics worsen
when d grows.

Embeddings of distributions can be general-
ized to yield embeddings of conditional distribu-
tions. The first application is to Bayesian infer-
ence on graphical models. We have developed
two approaches: in the first [556, 602], the mes-
sages are conditional density functions, subject
to smoothness constraints; these were orders of
magnitude faster than competing nonparamet-
ric BP approaches, yet more accurate, on prob-
lems including depth reconstruction from 2-D
images and robot orientation recovery. In the
second approach [558], conditional distributions
P (Y |X = x) are represented directly as embed-
dings in the RKHS, allowing greater generality
(for instance, one can define distributions over
structured objects such as strings or graphs, for
which probability densities may not exist). We

showed the conditional mean embedding to be
a solution to a vector valued regression prob-
lem [492], which allows us to formulate sparse
estimates. The second application is to reinforce-
ment learning. In [491], we estimate the optimal
value function for a Markov decision process
using conditional distribution embeddings, and
the associated policy. This work was general-
ized to partially observable Markov decision pro-
cesses in [462], where the kernel Bayes’ rule was
used to integrate over distributions of the hidden
states.

Another important application of conditional
mean embeddings is in testing for conditional
independence (CI). We proposed a Kernel-based
Conditional Independence test (KCI-test) [519]
which avoids the classical drawbacks of CI test-
ing. Most importantly, we further derived its
asymptotic distribution under the null hypoth-
esis, and provided ways to estimate such a dis-
tribution. Our method is computationally appeal-
ing and is less sensitive to the dimensionality
of Z compared to other methods. This is the
first time that the null distribution of the kernel-
based statistic for CI testing has been derived.
Recently, we proposed a new permutation-based
CI test [390] that easily allows the incorporation
of prior knowledge during the permutation step,
has power competitive with state-of-the-art ker-
nel CI tests, and accurately estimates the null
distribution of the test statistic, even as the di-
mensionality of the conditioning variable grows.

Lastly, we have recently leveraged the KME
in computing functionals of random variables
Z = f(X1, X2, . . . , Xn) [43], which is ubiqui-
tous in various applications such as probabilistic
programming. Our approach allows us to obtain
the distribution embedding of Z directly from
the embeddings of X1, X2, . . . , Xn without re-
sorting to density estimation. It is in principle
applicable to all functional operations and data
types, thank to the generality of kernel methods.
Based on the proposed framework, we showed
how it can be applied to non-parametric struc-
tural equation models, with an application to
causal inference. As an aside, we have also de-
veloped algorithms based on distribution embed-
ding for identifying confounders [422], which is
one of the most fundamental problems in causal
inference.

More information: https://ei.is.tuebingen.mpg.de/project/kernel-distribution-embeddings
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