
Automatic LQR Tuning Based on
Gaussian Process Optimization: Early Experimental Results

Alonso Marco1, Philipp Hennig2, Jeannette Bohg1, Stefan Schaal1,3 and Sebastian Trimpe1

Abstract— This paper proposes an automatic controller tun-
ing framework based on linear optimal control combined with
Bayesian optimization. With this framework, an initial set
of controller gains is automatically improved according to a
pre-defined performance objective evaluated from experimen-
tal data. The underlying Bayesian optimization algorithm is
Entropy Search, which represents the latent objective as a
Gaussian process and constructs an explicit belief over the
location of the objective minimum. This is used to maximize
the information gain from each experimental evaluation. Thus,
this framework shall yield improved controllers with fewer eva-
luations compared to alternative approaches. A seven-degree-
of-freedom robot arm balancing an inverted pole is used as
the experimental demonstrator. Preliminary results of a low-
dimensional tuning problem highlight the method’s potential
for automatic controller tuning on robotic platforms.

I. INTRODUCTION

Robotic setups often need fine-tuned controller parameters
both at low- and task-levels. Finding an appropriate set
of parameters through simplistic protocols, such as manual
tuning or grid search, can be highly time-consuming. We
seek to automate the process of fine tuning a nominal con-
troller based on performance observed in experiments on the
physical plant. We aim for information-efficient approaches,
where only few experiments are needed to obtain improved
performance.

Designing controllers for balancing systems such as in [1]
or [2] are typical examples for such a scenario. Often, one
can without much effort obtain a rough linear model of the
system dynamics around an equilibrium configuration, for
example, from first principles modeling. Given the linear
model, it is then relatively straightforward to compute a sta-
bilizing controller, for instance, using optimal control. When
testing this nominal controller on the physical plant, however,
one may find the balancing performance unsatisfactory, e.g.
due to unmodeled dynamics, parametric uncertainties of the
linear model, sensor noise, or imprecise actuation. Thus, fine-
tuning the controller gains in experiments on the real system
is desirable in order to partly mitigate these effects and obtain
improved balancing performance.

Aiming at automating this process, we propose a controller
tuning framework extending previous work [3]. Therein, a

1 Autonomous Motion Department at the Max Planck Institute for
Intelligent Systems, Tübingen, Germany

2 Empirical Inference Department at the Max Planck Institute for
Intelligent Systems, Tübingen, Germany

3 Computational Learning and Motor Control Lab at the University of
Southern California, Los Angeles, CA, USA

E-mail: alonso.marcovalle@tuebingen.mpg.de
strimpe@tuebingen.mpg.de

This work was supported by the Max Planck Society.

Fig. 1. Robot Apollo balancing an inverted pole. This experimental
platform is used as a demonstrator of the automatic tuning framework.

Linear Quadratic Regulator (LQR) is iteratively improved
based on control performance observed in experiments. The
controller parameters of the LQR design are adjusted by
means of a simple gradient descent approach, which per-
forms local evaluations to compute a rough approximation of
the gradient. While control performance could be improved
in experiments on a balancing platform in [3], this approach
does not exploit the available data as much as could be done.
It uses the data only to locally approximate the gradient.

In contrast to [3], we propose the use of Entropy Search
(ES) [4], a recent algorithm for global Bayesian optimization,
as the minimizer for the LQR tuning problem. ES employs a
Gaussian process (GP) as a non-parametric model capturing
the knowledge about the unknown cost function. At every
iteration, the algorithm exploits all past data to infer the
shape of the cost function. Furthermore, in the spirit of
an active learning algorithm, it suggests the next evaluation
such as to learn most about the cost function. Thus, we
expect ES to be more data-efficient than simple gradient-
based approaches as in [3]; that is, to yield better controllers
with fewer experiments.

The main contribution of this paper is the combination of
ES [4] with the LQR tuning framework proposed in [3]. The
effectiveness of the resulting auto-tuning method is demon-
strated in experiments of a humanoid robot balancing a pole



in one dimension (see Figure 1). In this paper, we present
first experimental results, where, in particular, we consider a
low-dimensional parameterization of the controller. In order
to test the learning method, we initialize it with a wrong
model, but only modify one physical parameter (damping co-
efficient). Further experiments in higher dimensional spaces
or with a completely wrong model are future work. Although
ES has been successfully applied on numerical optimization
problems before, this work is the first to use it for controller
tuning on a complex robotic platform.

Related work: The LQR tuning framework herein consi-
ders the parametrization of controllers in terms of the weights
of an LQR cost. In [5], this controller parametrization is ex-
plored in the context of reinforcement learning. The authors
find this choice to be inefficient for solving a manipulation
task. However, similar to the findings in [3], we find LQR
parametrization suitable for improving feedback controllers
for a balancing problem.

The cart-pole balancing problem is also used as a demon-
strator in [6] and [7]. In contrast with our work, they
parametrize directly the control feedback gain instead of the
LQR weights, and the data is acquired from a simulated
setup instead of a real system. In [6], the authors shape
the instantaneous reward with a quadratic LQR cost, and
retrieve the optimum after many roll-outs applying policy
gradient. In [7], the parameters of a linear state feedback
controller are learned. The space of parameters is explored
by maximizing the posterior entropy of a GP that models the
system performance through a cost function.

Outline of the paper: The LQR tuning problem is de-
scribed in Sec. II. The use of ES for automating the tuning
is outlined in Sec. III. The experimental results obtained on
the robotic platform are presented in Sec. IV. The paper
concludes with remarks in Sec. V.

II. LQR TUNING PROBLEM

In this section, we formulate the LQR tuning problem
following the approach proposed in [3].

A. Control design problem

We consider a system that follows a discrete-time non-
linear dynamic model

xk+1 = f(xk,uk,wk) (1)

with system states xk, control input uk, and zero-mean
process noise wk at time instant k. We assume that (1) has
an equilibrium at xk = 0, uk = 0 and wk = 0, which we
want to keep the system at. We also assume that xk can be
measured and, if not, an appropriate state estimator is used.

For regulation problems such as balancing about an equi-
librium, a linear model is often sufficient for control design.
Thus, we consider a scenario, where a linear model

x̃k+1 = Anx̃k +Bnuk +wk (2)

is given as an approximation of the dynamics (1) about the
equilibrium at zero. We refer to (2) as the nominal model,
while (1) are the true system dynamics, which are unknown.

A common way to measure the performance of a control
system is through a quadratic cost function such as

J = lim
K→∞

1

K
E

[
K∑

k=0

xT
kQxk + uT

kRuk

]
(3)

with positive-definite weighting matrices Q and R, and E [·]
the expected value. The cost (3) captures a trade-off between
control performance (keeping xk small) and control effort
(keeping uk small), which we seek to achieve with the
control design.

Ideally, we would like to obtain a state feedback controller
for the non-linear plant (1) that minimized (3). Yet, this non-
linear control design problem is intractable in general. In-
stead, a straightforward approach that yields a locally optimal
solution is to compute the optimal controller minimizing (3)
for the nominal model (2). This controller is given by the
well-known Linear Quadratic Regulator (LQR) [8, Sec. 2.4]

uk = Fxk (4)

whose static gain matrix F can readily be computed by
solving the discrete-time infinite-horizon LQR problem for
the nominal model (An,Bn) and the weights (Q,R). For
simplicity, we write

F = lqr(An,Bn,Q,R). (5)

If (2) perfectly captured the true system dynamics (1),
then (5) would be the optimal controller for the problem at
hand. However, in practice, there can be several reasons why
the controller (5) is suboptimal: the true dynamics are non-
linear, the nominal linear model (2) involves parametric un-
certainty, or the state is not perfectly measurable (e.g. noisy
or incomplete state measurements). While still adhering to
the controller structure (4), it is thus beneficial to fine tune
the nominal design (the gain F ) based on experimental data
to partly compensate for these effects. This is the goal of the
automatic tuning approach, which is detailed next.

B. LQR tuning problem

Following the approach in [3], we parametrize the con-
troller gains F in (4) as

F (θ) = lqr(An,Bn, Q̄(θ), R̄(θ)) (6)

where Q̄(θ) and R̄(θ) are design weights parametrized in
θ ∈ RD, which are to be varied in the automatic tuning
procedure. For instance, Q̄(θ) and R̄(θ) can be diagonal
matrices with θj > 0, j = 1, . . . , D, as diagonal entries.

When varying θ, different controller gains F (θ) are
obtained. These will affect the system performance through
(4), thus resulting in a different cost value from (3) in
each experiment. To make the parameter dependence of (3)
explicit, we write

J = J(θ). (7)

The goal of the automatic LQR tuning is to vary the
parameters θ such as to minimize the cost (3).

Remark: The weights (Q,R) in (3) are referred to as
performance weights. Note that, while the design weights



(
Q̄(θ), R̄(θ)

)
in (6) change during the tuning procedure,

the performance weights remain unchanged.

C. Optimization problem

The above LQR tuning problem is summarized as the
optimization problem

arg minJ(θ) s.t. θ ∈ D (8)

where we restrict the search of parameters to a bounded
domain D ⊂ RD. The domain D typically represents
a region around the nominal design, where performance
improvements are to be expected or exploration is considered
to be safe.

The shape of the cost function in (8) is unknown. Neither
gradient information is available nor guarantees of convexity
can be expected. Furthermore, (3) cannot be computed from
experimental data in practice as it represents an infinite-
horizon problem. As is also done in [3], we thus consider
the approximate cost

Ĵ =
1

K

[
K∑

k=0

xT
kQxk + uT

kRuk

]
(9)

with a finite, yet long enough horizon K. The cost (9) can
be considered a noisy evaluation of (3). Such an evaluation
is expensive as it involves conducting an experiment, which
lasts few minutes in the considered balancing application.

III. LQR TUNING WITH ENTROPY SEARCH

In this section, we introduce Entropy Search (ES) [4] as
the optimizer to address problem (8). The key characteristics
of ES are explained in Sec. III-A to III-C, and the resulting
framework for automatic LQR tuning is summarized in
Sec. III-D. Here, we present only the high-level ideas of
ES from a practical standpoint. The reader interested in
the mathematical details, as well as further explanations, is
referred to [4].

A. Underlying cost function as a Gaussian process

ES is one out of several popular formulations of Bayesian
Optimization [9], [10], [11], a framework for global opti-
mization in which uncertainty over the objective function
J is represented by a probability measure p(J), typically
a Gaussian process (GP) [12]. Note that the shape of the
cost function (3) is unknown; only noisy evaluations (9) are
available. A GP can be understood as a probability measure
over a function space. Thus, the GP encodes the knowledge
that we have about the cost function. New evaluations are
incorporated through conditioning the GP on these data. With
more data points, the cost function shape thus becomes better
known. GP regression is a common way in machine learning
for inferring an unknown function from noisy evaluations;
refer to [12] for more details.

We model prior knowledge about the cost function J as
the GP

J(θ) ∼ GP (µ(θ), k(θ,θ∗)) (10)

θ

J
(θ
)

p
m
in
(θ
)

Fig. 2. Example Gaussian process after three function evaluations (orange
dots), reproduced with slight alterations from [4]. The posterior mean
µ̄(θ) is shown in solid thick violet, two standard deviations 2σ̄(θ) in
solid thin violet, and the probability density as a gradient of color that
decreases away from the mean. Two standard deviations of the likelihood
noise 2σn are represented as orange vertical bars at each evaluation. Three
randomly sampled functions from the posterior GP as dashed violet lines.
Approximated probability distribution over the location of the minimum
pmin(θ) in dark blue. This plot uses arbitrary scales for each object.

with mean function µ(θ) and covariance function k(θ,θ∗).
Common choices are a zero mean function (µ(θ) = 0 for
all θ), and the squared exponential (SE) covariance function

kSE(θ,θ∗) = σ2 exp

[
−1

2
(θ − θ∗)TS(θ − θ∗)

]
(11)

which we also use herein. The covariance function k(θ,θ∗)
generally measures covariance between J(θ) and J(θ∗). It
can thus be used to encode assumptions about properties
of J such as smoothness, characteristic length-scales, and
signal variance. In particular, the SE covariance function (11)
models smooth functions with signal variance σ2 and length-
scales S = diag(λ1, λ2, . . . , λD), λj > 0.

We assume that the noisy evaluations (9) of (3) can be
modeled as

Ĵ = J(θ) + ε (12)

where the independent identically distributed noise ε descri-
bes a Gaussian likelihood N (J(θ), σ2

n ).
To simplify notation, we write y = {Ĵ i}Ni=1 for N

evaluations at locations Θ = {θi}Ni=1. Conditioning the GP
on the data {y,Θ} then yields another GP with posterior
mean µ̄(θ) and a posterior variance k̄(θ,θ∗).

Figure 2 provides an example for a one-dimensional cost
function. Shown are the posterior mean and two standard
deviations of the GP after three evaluations (orange dots). As
can be seen from this graph, the shape of the mean is adjusted
to fit the data points, and the uncertainty (standard deviation)
is reduced around the evaluations points. In regions where
no evaluations have been made, the uncertainty is still
large. Thus, the GP provides a mean approximation of the
underlying cost function, as well as a description of the
uncertainty associated with this approximation.

We gather the hyperparameters of the GP in the set
H = {λ1, λ2, . . . , λD, σ, σn}. An initial choice of H can be
improved with every new data point Ĵ i by adapting the hy-
perparameters. As commonly done, the marginal likelihood
is maximized with respect to H at each iteration of ES.

Typically, the cost can have different sensitivity to different
parameters θj . We use automatic relevance determination



[12, Sec. 5.1] in the covariance function (11) to remove from
the inference those dimensions that have low impact on the
cost.

B. Probability measure over the location of the minimum

A key idea of ES (see [4, Sec. 1.1]) is to explicitly
represent the probability pmin(θ) for the minimum location:

pmin(θ) ≡ p(θ = arg min J(θ)). (13)

The probability pmin(θ) is induced by the GP for J : given a
distribution of cost functions J as described by the GP, one
can in principle compute the probability for any θ of being
the minimum of J . For the example GP in Fig. 2, pmin(θ)
is shown by the dark blue line.

To obtain a tractable algorithm, ES approximates pmin(θ)
with finitely many points on a non-uniform grid that puts
higher resolution in regions of greater influence.

C. Information-efficient evaluation decision

The key feature of ES is the suggestion of new locations
θ, where (9) should be evaluated to learn most about the
location of the minimum. This is achieved by selecting the
next evaluation point that maximizes the relative entropy

H =

∫
D
pmin(θ) log

pmin(θ)

b(θ)
dθ (14)

between pmin(θ) and the uniform distribution b(θ) over the
bounded domain D. The rationale for this is that the uniform
distribution essentially has no information about the location
of the minimum, while a very “peaked” distribution would
be desirable to obtain distinct potential minima. This can be
achieved by maximization of the relative entropy (14). The
associated problem is solved numerically.

ES selects next evaluations where the first order expansion
∆H(θ) of the expected change in (14) is maximal. In this
way, the algorithm efficiently explores the domain of the
optimization problem in terms of information gain (cf. [4,
Sec. 2.5]). Conceptually, the choice of the locations Θ is
made such that “we evaluate where we expect to learn most
about the minimum, rather than where we think the minimum
is” [4, Sec. 1.1].

In addition to suggesting the next evaluation, ES also
outputs its current best guess of the minimum location; that
is, the maximum of its approximation to pmin(θ).

D. Automatic LQR tuning

The proposed method for automatic LQR tuning is ob-
tained by combining the LQR tuning framework from Sec-
tion II with ES; that is, using ES to solve (8). At every
iteration, ES suggests a new controller (through θ with
(6)), which is then tested in an experiment to obtain a new
cost evaluation (9). Through this iterative procedure, the
framework is expected to explore relevant regions of the cost
(3), infer the shape of the cost function, and eventually yield
the global minimum within D. The automatic LQR tuning
method is summarized in Algorithm 1.

The performance weights (Q,R) encode the desired
performance for the system (1). Thus, a reasonable initial

Algorithm 1 Automatic LQR Tuning.
1: initialize θ0; typically Q̄(θ0) = Q, R̄(θ0) = R
2: Ĵ0 ← COSTEVALUATION(θ0) . Cost evaluation
3: {Θ,y} ← {θ0, Ĵ0}
4: procedure ENTROPYSEARCH(k,l,N ,{Θ,y})
5: for i = 1 to N do
6: [µ̄, k̄]← GP(k, l, {Θ,y}) . GP posterior
7: pmin ← approx(µ̄, k̄) . Approximate pmin
8: θi ← arg max ∆H . Next location to evaluate at
9: Ĵi ← COSTEVALUATION(θi) . Cost evaluation

10: {Θ,y} ← {Θ,y} ∪ {θi, Ĵi}
11: θBG ← arg max pmin . Update current “Best Guess”
12: end for
13: return θBG

14: end procedure

15: function COSTEVALUATION(θ)
16: LQR design: F̄ ← lqr(An,Bn, Q̄(θ), R̄(θ))
17: update control law (4) with F = F̄
18: perform experiment and record {xk}, {uk}
19: Evaluate cost: Ĵ ← 1

K

[∑K
k=0 x

T
kQxk + uT

kRuk

]
20: return Ĵ
21: end function

choice of the parameters θ is such that the design weights(
Q̄(θ), R̄(θ)

)
equal (Q,R). The obtained initial gain F

would be optimal if (2) were the true dynamics. After N
evaluations, ES is expected to improve this initial gain based
on experimental data representing the true dynamics (1).

The call to ES involves specifying the type of covariance
function k and the type of likelihood l, while it assumes zero
mean.

IV. EXPERIMENTAL RESULTS

Starting with the initial LQR design (5) based on the
nominal model and the performance weights, ES adjusts the
design (6) and guides the search towards a controller that
retrieves a better performance, and thus, a lower cost value.

This paper shows preliminary results of the proposed
framework in a two-dimensional parameter space.

A. System description

We consider a one-dimensional balancing problem: a
pole linked to a handle through a rotatory joint with one
degree of freedom (DOF) is kept upright by controlling the
acceleration of the end-effector of a seven DOF robot arm
(Kuka lightweight robot). Figure 1 shows the setup with the
pole at the upright position. The angle of the pole is tracked
using an external motion capture system. The two colored
balls do not serve any functional purpose in this project.

The continuous-time dynamics of the balancing problem
(similar to [13]) are described by:

mr2ψ̈(t)−mgr sinψ(t) +mr cosψ(t)u(t) + ξψ̇(t) = 0

s̈(t) = u(t) (15)

where ψ(t) is the deviation of the pole angle with respect
to the gravity axis, s(t) is the deviation of the end-effector
from the zero position, and u(t) represents the acceleration
of the the end-effector. The center of mass of the pole lies
at r ' 0.61 m from the axis of the rotatory joint, its mass



Fig. 3. Mean of the GP represented in violet and two standard deviations
(above and below) in grey. Current “best guess” for the location of the min-
imum (green dot) θBG = [1118.3, 1.0]. Location suggested to evaluate next
such that the information gain is maximal (blue dot) θ6 = [1086.01, 245.4].
The red dot corresponds to the initial controller, computed at location
θ0 =

[
103, 103

]
. In general, the orange dots represent any other evaluation.

In this case, these occur at the corners of the domain.

is m ' 0.39 kg, the ball bearing in the rotatory joint has
a friction coefficient of ξ ' 0.012 Nms, and the gravity
constant is g = 9.81 m/s2.

The model (15) assumes that we can command a dis-
cretized end-effector acceleration uk as control input to
the system. In reality, this end-effector acceleration is real-
ized through an appropriate tracking controller for the end-
effector. For this tracking controller, we follow a similar
control structure as the one proposed in [14].

A model (2) of the system is obtained by linearization of
(15) about the equilibrium ψ = 0, s = 0 and discretization
with a sampling time of Ts = 1 ms.

The estimated end-effector position sk and velocity ṡk
are computed at a sampling rate of 1kHz from the robot’s
joint encoders using forward kinematics. The pole orientation
is captured at 200 Hz by the motion capture system; this
measurement is fed to a Kalman filter estimating the pole
angle ψk and its angular velocity ψ̇k.

We augment the system by an integrator on sk, zk+1 =
zk + Tssk to compensate for steady state error in the end-
effector position (see [1] for an analysis of integral action in
balancing problems). With this, the entire state vector is

xk = [ψk, ψ̇k, sk, ṡk, zk]T. (16)

B. Automatic LQR tuning: Implementation choices

We choose the performance weights to be

Q = diag(1, 103, 1, 103, 0), R = 1 (17)

where diag(·) denotes the diagonal matrix with the arguments
on the diagonal. We desire to have a quiet overall motion in
the system. Therefore, we penalize the velocities ψ̇k and ṡk
more than the other states. The weight for the integrator state
is set to zero, as it is an artificial state (implemented in the
controller), which does not affect the perceived balancing

Fig. 4. GP posterior after 24 evaluations. After 19 iterations ES suggest
θBG = [1999.9, 899.4] as the location of the minimum (green dot). The
red dot corresponds to the initial controller.

performance, but only the steady-state position of the end-
effector.

We parametrize the design weights as

Q̄(θ) = diag(1, θ1, 1, θ2, 1), R̄(θ) = 1 (18)

where the parameters θ = [θ1, θ2] are allowed to vary in the
range [1, 2000].

An initial choice for the design weights is such that
θ0 =

[
103, 103

]
, since we want the first four states to have

the same penalization as the one required in the performance
weights. In favour of having a feasible LQR design, a non-
zero weight must be chosen for the integrator state. Although
this makes (18) differ from (17), we still expect ES to
improve any arbitrarily chosen initial controller.

Balancing experiments were run for 2 minutes, i.e. a
discrete time horizon of K = 1.2 ·105 steps. However, some
controllers could destabilize the system at time m < K,
which means that the system exceeded either acceleration
bounds or state constraints (in particular, a box of allowable
end-effector positions) introduced for safety reasons. In these
cases, the experiment was stopped and the cost was computed
using the available data up to the time m using the heuristic

Ĵuns =
1

K

[
m−1∑
k=0

(
xT
kQxk + uT

kRuk

)
+ α(K −m)

]
(19)

where α > 0 was chosen roughly one order of magnitude
larger than the typical cost values obtained under stable
conditions.

Before running ES, a few experiments were realized to
acquire knowledge about the hyperparameters H. Accord-
ingly, a Gamma prior distribution was assumed over each
hyperparameter with expected values E[λj ] = 500, E[σ] =
0.4, E[σn] = 0.01, which were used as prior knowledge for
the first iteration of ES, assuming a small variance. After
each iteration, the GP marginal likelihood was maximized
with respect to the hyperparameters taking into account these
Gamma priors to better fit the current data.



TABLE I
COST VALUES FOR CASES 1 AND 2

Ĵ (Case 1) Ĵ (Case 2)
mean std mean std

Initial set θ0 1.862 - 0.1958 0.02800
Final best guess θBG 0.17556 0.0208 0.1648 0.02162

C. Results

We present the experimental results of two runs of the
automatic LQR tuning. In the first one, the model (2) has
been corrupted (significant underestimation of the damping
coefficient) to provide more room for the auto-tuning. In the
second one, we used the best available linear model.

Case 1: ES was initialized with five evaluations, i.e. the
initial controller θ0, and evaluations at the four corners
of the domain [1, 2000] × [1, 2000]. The initial controller
destabilized the system and its cost was computed according
to (19) with α = 1.5. Figure 3 shows the two-dimensional
Gaussian process posterior after the five initial evaluations,
which have relatively high cost values.

The algorithm can also work without evaluating initially
at the corners of the domain; however, we found that they
provide useful prestructuring of the GP and tend to speed up
the learning. This way, the algorithm focuses on interesting
regions more quickly.

Executing Algorithm 1 for 19 iterations (i.e. 19 balancing
experiments) yielded the posterior GP illustrated in Fig. 4.
The “best guess” θBG (green dot) is what ES suggests to be
the location of the minimum of the underlying cost (3).

To evaluate the result of the automatic LQR tuning, we
computed the cost of the resulting controller (best guess
after 19 iterations) in five separate balancing experiments.
The average and standard deviation of these experiments are
shown in Table I (left), together with the cost value of the
initial controller (which was unstable in this case).

Case 2: In this experiment, the parameters of the model
were not artificially modified, and the initial controller was
stable. After running Algorithm 1 for 27 iterations, ES
suggested θBG = [1402.1, 451, 6] as the best controller. The
results of evaluating this controller five times, in comparison
to the initial controller, are shown in Table I (right). Albeit
the initial controller was obtained from the best linear model
we had, the performance could still be improved by 15.9%.

V. CONCLUDING REMARKS

In this work, we introduce Entropy Search (ES), a global
Bayesian optimization algorithm, for automatic controller
tuning. We successfully demonstrated the developed tuning
framework in experiments of a humanoid robot balancing an
inverted pendulum. Improved controllers were obtained both
when the method was initialized with an unstable and with
a stable controller.

The experiments herein represent early results, and we
plan to do further tests in order to better evaluate the
potential of the proposed method. In particular, we plan
to investigate higher dimensional tuning problems (here,

only two parameters were varied) and cases where only a
completely wrong nominal model is given (here, only the
damping coefficient was corrupted). Since the ES algorithm
reasons about where to evaluate next in order to maximize the
information gain of an experiment, we expect the algorithm
to make better use of the available data and yield improved
controllers more quickly than alternative approaches. Inves-
tigating whether this claim holds in practice by comparing
the tuning performance of different methods is future work.

Another relevant direction for future extensions of the
proposed method toward a truly automatic tool concerns the
aspect of safety. While ES seeks to maximize the informa-
tion obtained from an experiment, it seems reasonable to
also include safety considerations such as avoiding unstable
controllers. Safe learning in the context of control is an area
of increasing interest and has recently been considered, e.g.,
in [7], [15], [16] and [17] in slightly different contexts.

REFERENCES

[1] S. Trimpe and R. D’Andrea, “The Balancing Cube: A dynamic
sculpture as test bed for distributed estimation and control,” IEEE
Control Systems Magazine, vol. 32, no. 6, pp. 48–75, 2012.

[2] S. Mason, L. Righetti, and S. Schaal, “Full dynamics LQR control of
a humanoid robot: An experimental study on balancing and squatting,”
in 14th IEEE-RAS International Conference on Humanoid Robots,
2014, pp. 374–379.

[3] S. Trimpe, A. Millane, S. Doessegger, and R. D’Andrea, “A self-tuning
LQR approach demonstrated on an inverted pendulum,” in IFAC World
Congress, 2014, pp. 11 281–11 287.

[4] P. Hennig and C. J. Schuler, “Entropy search for information-efficient
global optimization,” The Journal of Machine Learning Research,
vol. 13, no. 1, pp. 1809–1837, 2012.

[5] J. W. Roberts, I. R. Manchester, and R. Tedrake, “Feedback controller
parameterizations for reinforcement learning,” in IEEE Symposium on
Adaptive Dynamic Programming And Reinforcement Learning, 2011,
pp. 310–317.

[6] J. Peters and S. Schaal, “Natural Actor-Critic,” Neurocomputing,
vol. 71, no. 7, pp. 1180–1190, 2008.

[7] J. Schreiter, D. Nguyen-Tuong, M. Eberts, B. Bischoff, H. Markert,
and M. Toussaint, “Safe exploration for active learning with Gaussian
processes,” in European Conference on Machine Learning and Prin-
ciples and Practice of Knowledge Discovery in Databases, 2015, to
appear.

[8] B. D. Anderson and J. B. Moore, Optimal Control: Linear Quadratic
Methods. Dover Publications, 1990.

[9] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global
optimization of expensive black-box functions,” Journal of Global
Optimization, vol. 13, no. 4, pp. 455–492, 1998.

[10] D. J. Lizotte, “Practical bayesian optimization,” Ph.D. dissertation,
2008.

[11] M. A. Osborne, R. Garnett, and S. J. Roberts, “Gaussian processes
for global optimization,” in 3rd International Conference on Learning
and Intelligent Optimization, 2009, pp. 1–15.

[12] C. E. Rasmussen, “Gaussian processes for machine learning,” 2006.
[13] S. Schaal, “Learning from demonstration,” Advances in Neural Infor-

mation Processing Systems, pp. 1040–1046, 1997.
[14] L. Righetti, M. Kalakrishnan, P. Pastor, J. Binney, J. Kelly, R. C.

Voorhies, G. S. Sukhatme, and S. Schaal, “An autonomous manipu-
lation system based on force control and optimization,” Autonomous
Robots, vol. 36, no. 1-2, pp. 11–30, 2014.

[15] A. K. Akametalu, S. Kaynama, J. F. Fisac, M. N. Zeilinger, J. H.
Gillula, and C. J. Tomlin, “Reachability-based safe learning with
Gaussian processes,” in IEEE 53rd Annual Conference on Decision
and Control, 2014, pp. 1424–1431.

[16] Y. Sui, A. Gotovos, J. Burdick, and A. Krause, “Safe exploration
for optimization with Gaussian processes,” in The 32nd International
Conference on Machine Learning, 2015, pp. 997–1005.

[17] F. Berkenkamp and A. P. Schoellig, “Safe and robust learning control
with Gaussian processes,” in European Control Conference, 2015.


