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Abstract

We address the problem of causal discov-
ery in the two-variable case given a sample
from their joint distribution. The proposed
method is based on a known assumption that,
if X → Y (X causes Y ), the marginal distri-
bution of the cause, P (X), contains no in-
formation about the conditional distribution
P (Y |X). Consequently, estimating P (Y |X)
from P (X) should not be possible. However,
estimating P (X|Y ) based on P (Y ) may be
possible.

This paper employs this asymmetry to pro-
pose CURE, a causal discovery method which
decides upon the causal direction by com-
paring the accuracy of the estimations of
P (Y |X) and P (X|Y ). To this end, we pro-
pose a method for estimating a conditional
from samples of the corresponding marginal,
which we call unsupervised inverse GP re-
gression. We evaluate CURE on synthetic
and real data. On the latter, our method
outperforms existing causal inference meth-
ods.

1 INTRODUCTION

Drawing causal conclusions for a set of observed vari-
ables given a sample from their joint distribution is a
fundamental problem [Spirtes et al., 2000, Pearl, 2009].
Our goal here is to decide between X → Y and Y → X
(assuming no latent confounders) for two continuous
univariate random variables X and Y , given a sample
from their joint distribution, P (X,Y ). Conditional-
independence-based causal discovery methods [Spirtes
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et al., 2000, Pearl, 2009] estimate the Markov equiv-
alent graphs, all entailing the same conditional inde-
pendences. However, in the case of only two variables,
these methods can not recover the causal graph based
on P (X,Y ), since X → Y and Y → X are Markov
equivalent.

We review various methods that are also appropriate
for the case of two variables. Hoyer et al. [2009] and
Peters et al. [2014] suggest using Additive Noise Mod-
els (ANM). The causal inference method then reads:
whenever P (X,Y ) allows for an ANM in one direction,
i.e., there is a function f and a noise variable E such
that Y = f(X)+E with E ⊥⊥ X, but not in the other,
i.e., X cannot be obtained as a function of Y plus inde-
pendent noise, then the former direction is inferred to
be the causal one (in this case X → Y ). They further
show that in the generic case (up to some exceptions
like the case of linear f and Gaussian X and E) the
model is identifiable, that is, if there is an ANM in
one direction, the joint distribution P (X,Y ) does not
allow for an ANM in the backward direction. Previ-
ous work by Shimizu et al. [2006] proves identifiability
of ANM when restricted to linear functions and non-
Gaussian input and noise distributions (Linear Non-
Gaussian Acyclic Model (LiNGAM)). A generalization
of ANM is the Post-Nonlinear Model (PNL) [Zhang
and Hyvärinen, 2009], where Y = h(f(X) + E), with
E ⊥⊥ X, which is also identifiable, except for some spe-
cial cases. Mooij et al. [2010] infer the causal direction
by Bayesian model selection, defining non-parametric
priors on the distribution of the cause and the con-
ditional of the effect given the cause. Other causal
inference methods are based on the following postu-
late [Janzing and Schölkopf, 2010, Janzing et al., 2012,
Daniusis et al., 2010, Schölkopf et al.]:

Postulate 1 (indep. of input and mechanism)
If X → Y , then the marginal distribution of the cause,
P (X), and the conditional distribution of the effect
given the cause, P (Y |X), are “independent” in the
sense that P (Y |X) contains no information about
P (X) and vice versa.
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The (causal) conditional P (Y |X) can be thought of
as the mechanism transforming cause X to effect Y .
Then, Postulate 1 is plausible if we are dealing with
a mechanism of nature that does not care what (in-
put P (X)) we feed into it. This independence can
be violated in the backward direction: P (Y ) and
P (X|Y ) may contain information about each other
because each of them inherits properties from both
P (X) and P (Y |X). This constitutes an asymmetry
between cause and effect. While Postulate 1 is ab-
stract, the aforementioned approaches provide formal-
izations by specifying what is meant by independence
or information: Janzing and Schölkopf [2010] postu-
late algorithmic independence of P (Y |X) and P (X),
i.e. zero algorithmic mutual information: I(P (X) :

P (Y |X))
+
= 0. This is equivalent to saying that the

shortest description (in the sense of Kolmogorov com-
plexity) of P (X,Y ) is given by separate descriptions
P (X) and P (Y |X). Since Kolmogorov complexity is
uncomputable, practical implementations must rely on
other notions of (in)dependence or information. For
deterministic non-linear relations Y = f(X), Janzing
et al. [2012] and Daniusis et al. [2010] define inde-
pendence through uncorrelatedness between logf ′ and
the density of P (X), both viewed as random variables
(note that in this case P (Y |X) is completely deter-
mined by f). This is reformulated in terms of informa-
tion geometry as a certain orthogonality in information
space. The corresponding causal inference method
sometimes also works for sufficiently small noise. Fi-
nally, Schölkopf et al. do not propose a new causal
inference method but argue that knowing the causal
direction has implications for various learning scenar-
ios, including semi-supervised learning (SSL). Specifi-
cally, if X → Y , P (X) contains no information about
P (Y |X) according to Postulate 1. As a result, a more
accurate estimate of P (X), as may be possible by the
addition of the extra unlabeled points in SSL, does not
influence an estimate of P (Y |X), and SSL is pointless
in this scenario. In contrast, SSL may be helpful in
case Y → X. Thus, their notion of independence be-
tween P (X) and P (Y |X) implicitly reads: the former
is not helpful for estimating the latter.

The proposed method is inspired by the latter. Our
use of Postulate 1 complies with their notion of inde-
pendence: if X → Y , estimating P (Y |X) based on
P (X) should not be possible. In contrast, estimating
P (X|Y ) given P (Y ) may be possible. Employing this
asymmetry, we propose CURE, a method to infer the
causal graph in the case of two variables that is appro-
priate for non-deterministic relations. The proposed
causal inference method infers X → Y if the estima-
tion of P (X|Y ) based on P (Y ) is more accurate than
the one of P (Y |X) based on P (X). Otherwise, Y → X
is inferred.

To this end, we propose a method for estimating a con-
ditional distribution based on samples from the cor-
responding marginal. We call it unsupervised inverse
GP regression for the following reason: in standard su-
pervised regression, given a sample from P (X,Y ), the
goal is to estimate the conditional P (Y |X). We call
supervised inverse regression the task of estimating
the conditional P (X|Y ), without changing the orig-
inal regression model of Y on X that was used for
the estimation of P (Y |X). The reason for introducing
inverse regression is related to our goal of estimating
the conditional P (X|Y ) from samples of the marginal
P (Y ). Using standard regression of X on Y would
be pointless in this scenario since only samples from
P (Y ) are given. As a result, inverse regression is cho-
sen and since it is based only on data from P (Y ) and
not P (X,Y ), we call it unsupervised inverse regression.
Finally, we term the proposed causal discovery method
Causal inference with Unsupervised inverse REgres-
sion (CURE).

Sections 2 and 3.2 describe the building blocks for un-
supervised inverse regression, presented in Section 3.1.
Section 4 describes CURE. In the following, we de-
note random variables with capital letters and their
corresponding values with lower case letters. Random
vectors are denoted with bold face capital letters and
their values with bold face lower case letters.

2 GAUSSIAN PROCESS LATENT
VARIABLE MODEL

The Gaussian process latent variable model (GP-
LVM) [Lawrence, 2005] can be interpreted as a multi-
output Gaussian process (GP) model [Rasmussen and
I., 2006] in which only the output data are observed,
while the input remain latent. Let y∗ ∈ RN×D be the
observed data where N is the number of observations
and D the dimensionality of each observation. These
data are associated with a latent vector taking values
x ∈ RN×Q. The purpose is often dimensionality reduc-
tion, thus Q � D. GP-LVM defines a mapping from
the latent to the observed space by using GPs, with hy-
perparameters θ. Assuming independence across the
dimensions, the likelihood function is given as:

p(y∗|x,θ) =

D∏
d=1

p(y∗d|x,θ)

where y∗d the dth column of y∗, p(y∗d|x,θ) =
N (y∗d; 0,Kx,x+σ2

nIN ), and Kx,x the N×N covariance
function defined by a selected kernel function. Thus,
p(y∗|x,θ) is a product of D independent Gaussian pro-
cesses where the input, x, is latent.

For the present work, only univariate random variables
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are relevant, thus D = Q = 1. This defines a single-
output GP-LVM, i.e., just one GP model with latent
input. In this case, y∗ ∈ RN , x ∈ RN and the likeli-
hood function of single-output GP-LVM is given as:

p(y∗|x,θ) = N (y∗; 0,Kx,x + σ2
nIN ) (1)

with θ = (`, σf , σn), where we choose the RBF kernel

k(xi, xj) = {Kx,x}i,j = σ2
f exp

(
− 1

2`2
(xi − xj)2

)
Lawrence [2005] finds x (for multiple-output GP-
LVM), by MAP estimation, selecting a Gaussian prior
for x, while jointly maximizing with respect to θ. In
Bayesian GP-LVM [Titsias and Lawrence, 2010], in-
stead, x is variationally integrated out and a lower
bound on the marginal likelihood p(y∗) is computed.

3 UNSUPERVISED INVERSE
REGRESSION

Throughout the rest of the paper, let x∗ :=
(x∗1, . . . , x

∗
N ) and y∗ := (y∗1 , . . . , y

∗
N ) be a sample of N

independently and identically distributed (i.i.d.) ob-
servations from P (X,Y ). Moreover, x∗ and y∗ are
rescaled between zero and one. In standard super-
vised regression, given x∗ and y∗, the task is to esti-
mate the conditional distribution P (Y |X), i.e., com-
pute the predictive distribution p(y|x,x∗,y∗). In su-
pervised inverse regression (or simply inverse regres-
sion) the task is to obtain p(x|y,y∗,x∗), but without
changing the original regression model of Y on X. Fi-
nally, the task of unsupervised inverse regression is to
compute p(x|y,y∗), i.e. estimate P (X|Y ) based only
on samples y∗ from P (Y ) (and not x∗). In the follow-
ing unsupervised inverse GP regression is described.

3.1 Unsupervised Inverse GP Regression

The goal is to compute p(x|y,y∗). A Gaussian pro-
cess regression model of Y on X is used. The predic-
tive distribution p(x|y,y∗) is given by marginalizing
over the distribution of the latent random vector (N -
dimensional latent variable) X := (X1, . . . , XN ) (in-
stead of inserting the true values X = x∗) and the
unknown GP hyperparameters Θ:

p(x|y,y∗) =

∫
X ,Θ

p(x,θ, x|y∗, y)dxdθ

=

∫
X ,Θ

p(x|y,y∗,x,θ)p(x,θ|y∗, y)dxdθ

≈
∫
X ,Θ

p(x|y,y∗,x,θ)p(x,θ|y∗)dxdθ (2)

The first factor, p(x|y,y∗,x,θ), is the predictive dis-
tribution of supervised inverse GP regression, which is

explained in section 3.2 (Eq. (5)). The second factor,
p(x,θ|y∗), is the posterior distribution over x and the
hyperparameters θ, given the observed y∗.

A uniform prior, U(0, 1), is chosen for the unknown dis-
tribution of X. A uniform prior is, additionally, placed
over θ which suppresses overly flexible functions (small
`) to restrict the function class. By Bayes’ theorem:

p(x,θ|y∗) =
p(y∗|x,θ)p(x)p(θ)

p(y∗)
∝ p(y∗|x,θ)p(x)p(θ)

= p(y∗|x,θ) = N (y∗; 0,Kx,x + σ2
nIN ) (3)

p(y∗|x,θ) is the likelihood of single-output GP-LVM
(Eq. (1)). Note that the computation of the la-
tent’s posterior distribution p(x,θ|y∗) is analytically
intractable since x appears non-linearly inside the in-
verse of Kx,x + σ2

nIN [Titsias and Lawrence, 2010].
In our implementation, we approximate the poste-
rior p(x,θ|y∗) using a Markov Chain Monte Carlo
(MCMC) method, slice sampling [Neal, 2003]. The
sample size N determines the dimensionality of the
space to sample from, which is N + 3 (including the
three hyperparameters). Thus, the computational
complexity is determined by N and this step poses
the main computational bottleneck of our algorithm.

p(x|y,y∗) is estimated by replacing the integral in (2)
with a sum over M MCMC samples from p(x,θ|y∗):

p(x|y,y∗) ≈ 1

M

M∑
i=1

p(x|y,y∗,xi,θi) (4)

So, p(x|y,y∗) is computed as the average of predictive
distributions of supervised inverse regressions. Each
predictive distribution p(x|y,y∗,xi,θi) uses the ith

sample, (xi,θi), from the posterior p(x,θ|y∗).

3.2 Supervised Inverse GP Regression

Following from the previous section, the remaining
task is to compute p(x|y,y∗,xi,θi) in (Eq. (4)), for
each MCMC sample i, with 1 ≤ i ≤ M . Since θi

and xi are independent and the distribution of X is
uniform, by Bayes’ theorem we get:

p(x|y,y∗,xi,θi) ∝ p(y∗, y|xi, x,θi)p(x|xi,θi)

= N (y∗, y; 0,K(xi,x),(xi,x) + σi
n

2
IN ) (5)

Notice that, unlike standard GP regression, the
predictive distribution of inverse GP regression,
p(x|y,y∗,xi,θi), is not Gaussian. We first compute

N (y∗, y; 0,K(xi,x),(xi,x) + σi
n
2
IN ) at the points of a

grid on [0, 1], and then normalize appropriately to get
p(x|y,y∗,xi,θi). Fig. 1 illustrates an example of su-
pervised inverse regression. The predictive distribu-
tions of standard GP regression, p(y|x,xi,y∗,θi) (for
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Figure 1: The predictive distributions of standard GP
regression at three x values (green) and the predictive
distribution of supervised inverse GP regression at one
y value (blue).

some i), at three x values are depicted in green and
the predictive distribution of inverse GP regression,
p(x|y,y∗,xi,θi), at one y value (yellow line), in blue.

The usual practice to estimate p(x|y,y∗,xi) would be
to learn directly a map from Y to X (discriminative
model). However, we need to use GP regression of Y
on X and not of X on Y in order to comply with the
model used in Section 3.1.

To conclude, p(x|y,y∗) is computed from Eq. (4), us-
ing Eq. (5) for p(x|y,y∗,xi,θi). Likewise, we can com-
pute p(y|x,x∗) repeating the above procedure with a
GP regression model of X on Y .

3.3 Evaluation

Finally, we need to evaluate the accuracy of our es-
timation of P (X|Y ). We compute the negative log

likelihood Lunsup
X|Y = − 1

N

∑N
i=1 log p(x∗i |y∗i ,y∗) at x∗,

y∗ to measure the performance of unsupervised in-
verse regression. We could also evaluate it at new
test points if we had a separate test set xte, yte

as − 1
N

∑N
i=1 log p(xtei |ytei ,y∗). However, since the

task is unsupervised, we don’t have overfitting is-
sues and use all data for estimating P (X|Y ). In
order to evaluate the accuracy of the estimation of
P (X|Y ), we compare Lunsup

X|Y with the accuracy of the

corresponding supervised inverse regression Lsup
X|Y =

− 1
N

∑N
i=1 log p(x∗i |y∗i ,y∗,x∗), using again a uniform

prior for X but with θ computed by maximization of
p(y∗|x∗,θ) w.r.t. θ. This way, we measure how much
the performance degrades due to the absence of x∗,
specifically by:

DX|Y =Lunsup
X|Y − Lsup

X|Y (6)

4 CURE

The ultimate goal is to decide upon the causal direc-
tion, X → Y or Y → X, given x∗ and y∗. According
to Postulate 1, if X → Y , estimating P (Y |X) from
P (X) should not be possible. In contrast, estimating
P (X|Y ) based on P (Y ) may be possible. So, CURE
is given as follows: if we can estimate P (X|Y ) based
on samples from P (Y ) more accurately than P (Y |X)
based on samples from P (X), then X → Y is inferred.
Otherwise, Y → X is inferred. In particular, we apply
unsupervised inverse GP regression two times. First,
DX|Y is computed as in (6):

DX|Y = Lunsup
X|Y − Lsup

X|Y =

− 1

N

N∑
i=1

log p(x∗i |y∗i ,y∗) +
1

N

N∑
i=1

log p(x∗i |y∗i ,y∗,x∗)

to evaluate the estimation of P (X|Y ) based on y∗.
Then, DY |X is computed as:

DY |X = Lunsup
Y |X − Lsup

Y |X =

− 1

N

N∑
i=1

log p(y∗i |x∗i ,x∗) +
1

N

N∑
i=1

log p(y∗i |x∗i ,x∗,y∗)

to evaluate the estimation of P (Y |X) based on x∗.
Finally, we compare the two performances: if DX|Y <
DY |X , then we infer the causal direction to be X → Y ,
otherwise we output Y → X.

5 DISCUSSION

Figure 2 depicts three datasets generated according
to the causal model X → Y (grey points) (note the
exchanged axes in the last figure). Since X → Y we
expect to be able to estimate P (X|Y ) (based on P (Y ))
more accurately than P (Y |X) (based on P (X)). The
quality of the estimation strongly depends on the gen-
erated MCMC samples from the high-dimensional pos-
terior in (3). Figures 2(a) and 2(b) refer to the es-
timation of P (X|Y ) based on samples from P (Y ),
whereas Fig. 2(c) to the estimation of P (Y |X) based
on samples from P (X). In Figures 2(a) and 2(b) the y-
coordinates of the red points correspond to y∗ and the
x-coordinates to one MCMC sample from p(x,θ|y∗)
(Eq. (3)). Given the sample (xi,θi), p(x|y,y∗,xi,θi),
plotted in blue, is computed by supervised inverse GP
regression. In Fig. 2(a) the grey points were gener-
ated according to Y = 2X3 +X +E, with X having a
uniform distribution and E zero-mean Gaussian noise.
On the other hand, the distribution of X in Fig. 2(b)
is sub-Gaussian and the noise is not additive. In this
case we often still get “good” MCMC samples.

On the contrary, in Fig. 2(c) the x-coordinates of the
red points correspond to x∗ and the y-coordinates to
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(a) (b) (c)

Figure 2: The grey points are generated according to X → Y . (a), (c): uniform P (X), additive Gaussian noise,
(b): sub-Gaussian P (X), non-additive noise. (a), (b): the y-coordinates of the red points correspond to y∗ and
the x-coordinates to one MCMC sample from p(x,θ|y∗). Given the sample (xi,θi), p(x|y,y∗,xi,θi), plotted
in blue, is computed by supervised inverse GP regression. (c): note that x and y axes are exchanged. The
x-coordinates of the red points correspond to x∗ and the y-coordinates to one sample from p(y,θ|x∗). Given the
sample (yi,θi), p(y|X = 0.64,x∗,yi,θi), plotted in blue, is computed by inverse regression.

one MCMC sample from p(y,θ|x∗). In this case we
often get “bad” MCMC samples as expected since we
should not be able to estimate P (Y |X) based on sam-
ples from P (X) (Postulate 1).

The step of sampling from the high dimensional dis-
tribution p(x,θ|y∗) is not trivial. Additionally, there
are two modes with equal probabilities, namely, one
that corresponds to the ground truth x∗ and one to
the “mirror” of x∗ (flipping X left to right). Good
initialization is crucial for sampling from this high-
dimensional space. The good news is that, for the
purpose of causal inference, we have the luxury of ini-
tializing the sampling algorithm with the ground truth
x∗, since this is given (but we treat it as a latent vari-
able), and with θ∗, which is computed by maximiz-
ing the likelihood p(y∗|x∗,θ) w.r.t. θ. This is fair
as long as it is done for both causal directions to be
checked. With this initialization, slice sampling starts
from the correct mode of p(x,θ|y∗) and usually (apart
from very noisy cases), we don’t get samples from the
“mirror” mode. In any case, for every sample, x∗ is
used to decide to keep either this or its mirror. Ini-
tializing slice sampling with x∗, we still get an asym-
metry between cause and effect: even by initializing
with the ground truth x∗, if Y → X and we try to
predict P (X|Y ) from P (Y ) (which are independent),
then we eventually often get “bad” MCMC samples
similar to the one in Fig. 2(c). Of course, this slice
sampling initialization is only feasible for the purpose
of causal inference, where both x∗ and y∗ are given.
If the goal is just estimating P (X|Y ) based on sam-
ples from P (Y ), then we only get to see y∗ and such
a sampling initialization is not possible. In that sense,
to be precise, the conditional P (X|Y ) is not estimated
based only on y∗, but also using some side information

for x∗ (for sampling initialization).

One final point of discussion is the choice of the hy-
perparameters’ prior. Non-invertible functional rela-
tionships between the observed variables can provide
clues to the generating causal model [Friedman and
Nachman, 2000]. In contrast, in the invertible case it
gets more difficult to infer the causal direction. This
is one more reason to restrict θ to favor more regular
functions (of large length-scale).

6 EXPERIMENTS

6.1 Simulated Data

We generate data both with additive noise, accord-
ing to Y = f(X) + E, with f(X) = bX3 + X,
and non-additive noise. Non-additive noise is sim-
ulated according to Y = f(X) + E, with P (E) =
σN (0, 1) |sin(2πνX)| + 1

4σN (0, 1) |sin(2π(10ν)X)|1.
By multiplying with a sinusoidal function the width
of the noise varies for different values of X. ν controls
the frequency of the wave. The results are included
in Fig. 4, for a non-linear f (setting b = 2), and in
Fig. 5, for a linear f (setting b = 0). The three first
columns of the figures refer to data generated with ad-
ditive noise and the fourth column with non-additive
noise. We use four distributions for P (X): standard
uniform, sub-Gaussian, Gaussian and super-Gaussian,
each one corresponding to one row of Figures 4 and

1Note that we call Y = f(X) + E an additive noise
model only if X ⊥⊥ E. This comes from the perspective of
structural equations where the noise term is usually meant
to be independent of X. Then a conditional P (Y |X) gen-
erated by dependent additive noise can only be generated
by a structural equation with non-additive noise.
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5. For sub and super-Gaussian, data were generated
from a Gaussian distribution and their absolute values
were raised to the power q while keeping the origi-
nal sign. q = 0.7 for the sub-Gaussian distribution
(which is also close to bimodal), while q = 1.3 for
the super-Gaussian. Similarly, three distributions are
used for P (E): sub-Gaussian, Gaussian, and super-
Gaussian, each one corresponding to one of the first
three columns of Figures 4 and 5. The x-axis of
the first three columns refers to the standard devia-
tion (std) of the noise. Three values of std are used:
0.25, 0.45 and 0.8, each multiplied by the standard de-
viation of f(X), in order to get comparable results
across different experiments. The x-axis of the fourth
column is the frequency of the sinusoidal wave, ν, with
values from {4, 0.5, 025}. We generate N = 200 sam-
ples for each simulated setting.

We compare the proposed causal inference method
(CURE) with some of the causal inference methods
reviewed in the introduction: additive noise mod-
els (ANM) [Hoyer et al., 2009, Peters et al., 2014],
information-geometric causal inference (IGCI) [Daniu-
sis et al., 2010, Janzing et al., 2012] and Bayesian
model selection (GPI) [Mooij et al., 2010]. CURE
uses a uniform prior so a preprocessing step is first
applied to X and Y to remove possible isolated points
(low-density points). For CURE, M = 15000 MCMC
samples are generated from the 203-dimensional (N =
200) posterior using the slice sampling method, from
which the first 5000 are discarded. Since it is diffi-
cult to sample from this very high-dimensional space,
to get a more robust answer, we report the average
DX|Y and DY |X across 4 repetitions of CURE for
each dataset. We call those repetitions “internal” rep-
etitions of the CURE algorithm to distinguish them
from the repetitions of the simulations. Assume Di

X|Y
is the output of the ith internal repetition. Then,
DX|Y = 1

4

∑4
i=1D

i
X|Y and DY |X = 1

4

∑4
i=1D

i
Y |X . We

conduct 20 repetitions for each combination of method
and simulation setting, apart from CURE which is re-
peated 10 times, due to the high computational com-
plexity of the MCMC sampling step. The y-axis of
Figures 4 and 5 corresponds to the percentage of cor-
rect causal inferences.

For non-linear f (Fig. 4), we can observe that CURE
(red) infers correctly the causal direction when P (X)
is uniform or sub-Gaussian and for all noise distribu-
tions. The accuracy degrades in some cases of Gaus-
sian and super-Gaussian P (X) (due to the uniform
prior) with high standard deviation of P (E). IGCI
(green) infers the causal direction correctly in almost
all cases, even though it was proposed for determinis-
tic relations. ANM (blue) gets 100% correct decisions
on the additive noise data, however, its performance is
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Figure 3: Results of various causal inference methods
for 81 cause-effect pairs (86 excluding 5 multivariate
pairs), showing the percentage of correct causal infer-
ences for each decision rate.

really degraded when it comes to non-additive noise.
Finally, GPI (brown) performs better with uniform
P (X) than with Gaussian or super-Gaussian, where
its results are worse compared to the other methods.

For the linear case (Fig. 5), the performance of al-
most all methods gets worse since it gets more diffi-
cult to recover the causal direction. Specifically, the
case of linear f and Gaussian P (X) and P (N) is non-
identifiable [Hoyer et al., 2009]. This is also supported
by the results: in this case the decision of all meth-
ods is close to 50% (random guess). For uniform
P (X), CURE outperforms the other methods, however
for non-uniform P (X) its performance often degrades.
ANM generally performs relatively well with additive
noise, however, it again fails in the non-additive noise
case. GPI performs much better in the linear com-
pared to the non-linear case, outperforming the other
methods in several cases. Finally, IGCI often fails in
the linear case.

6.2 Real Data

Further, we evaluate the performance of our method
on real-world data, namely on a database with cause-
effect pairs2 (version 0.9), a detailed description of
which was recently provided by Mooij et al. [2014].
It consists of 86 pairs of variables from various do-
mains with known causal structure, the first 41 of
which are from the UCI Machine Learning Reposi-
tory [Bache and Lichman, 2013]. The task is to in-
fer the causal direction for each of the pairs. Each

2http://webdav.tuebingen.mpg.de/cause-effect/
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pair is weighted as suggested in the database. Five
of the pairs have multivariate X or Y and were ex-
cluded from the analysis. At most N = 200 sam-
ples from each cause-effect pair are used (less than
200 only if the pair itself has less samples). For
CURE, M = 10000 MCMC samples are generated,
after burning the first 10000 samples and addition-
ally discarding every other sample. The average DX|Y
and DY |X across 8 internal repetitions of CURE are
computed for each dataset. Two more methods par-
ticipate in this comparison: Post-Nonlinear Models
(PNL) [Zhang and Hyvärinen, 2009] and Linear Non-
Gaussian Acyclic Models (LiNGAM) [Shimizu et al.,
2006]. The results for all the methods are depicted
in Fig. 3. The y-axis corresponds to the percentage
of correct causal inferences. As the causal inference
methods we compare with, we also output a ranking
of the pairs according to a confidence criterion along
with the decisions on the causal direction. The method
is more certain about the decided direction of the top-
ranked pairs as opposed to the low-ranked ones. Us-
ing this ranking, we can decide on the causal direc-
tion of only a subset of the pairs for which we are
more confident about. This way, we trade off accu-
racy versus the number of decisions taken. The x-
axis of Fig. 3 corresponds to the percentage of pairs
for which we infer the causal direction (100% means
that we are forced to decide upon the direction of all
81 pairs). A good confidence criterion corresponds
to the accuracy being lowest for decision rate 100%
and increase monotonically as the decision rate de-
creases. As a confidence criterion we choose to use
the ratio between σDX|Y = std({Di

X|Y }1≤i≤8) and

σDY |X = std({Di
Y |X}1≤i≤8), with denominator the

one that corresponds to the inferred causal direction
(smaller D). The idea is that, if X → Y and we try to
predict P (X|Y ) based on P (Y ), the empirical variance
of the algorithm across internal repetitions is expected
to be small: MCMC samples are expected to corre-
spond to conditionals close to the ones of the ground
truth. On the other hand, when predicting P (Y |X)
based on P (X) (which are independent), the variance
is higher across internal repetitions.

We consider the null hypothesis that “the causal infer-
ence algorithm outputs random decisions with proba-
bility 1/2 each”. Then the grey area of Fig. 3 indi-
cates the 95% confidence interval of a binomial distri-
bution with n trials where n is the (weighted) number
of cause-effect pairs (the weights given as suggested in
the database). Thus, the area outside the grey area
corresponds to results significantly correlated with the
ground truth. We can observe that CURE (bold red)
outperforms the other methods for all decision rates,
however it is difficult to draw any definite conclusions
about the relative performance of these methods based

on only 81 cause-effect pairs. Moreover, the ratio of
standard deviations that is used as a confidence cri-
terion for CURE seems to be a good choice: for low
decision rates we even get 100% accuracy, decreasing
more or less monotonically as the decision rate in-
creases. IGCI performs well for high decision rates but
its confidence criterion does not behave as expected.
ANM has a better confidence criterion, however, its
performance is quite low compared to CURE and IGCI
when it is forced to take a decision. The result of PNL
is marginally significant in the forced-decision regime.
Finally, the results of GPI and LINGAM are not signif-
icantly correlated with the ground truth in the forced-
decision regime.

Increasing N , the performance is obviously increas-
ing. For example, running ANM with all the available
samples of the 81 cause-effect pairs results in an accu-
racy of 72% [Peters et al., 2014], much higher than its
accuracy with N = 200 (Fig. 3). Unfortunately, the
computational complexity of CURE did not allow for
it to be run for such a big sample size (thousands for
some pairs). However, we consider very encouraging
the fact that CURE can yield accuracy 75% already
with N = 200.

7 CONCLUSION

We proposed a method (CURE) to infer the causal
direction between two random variables given a sam-
ple from their joint distribution. It is based on the
postulate that the marginal distribution of the cause
and the conditional distribution of the effect given the
cause contain no information about each other. In con-
trast, the distribution of the effect and the conditional
of the cause given the effect may share information.
Exploiting this asymmetry, if we can estimate P (X|Y )
based on P (Y ) more accurately than P (Y |X) based on
P (X), then X → Y , is inferred. Otherwise, Y → X
is inferred. For that, unsupervised inverse GP regres-
sion was proposed as a method to estimate a condi-
tional from samples from the corresponding marginal.
CURE was evaluated in both simulated and real data,
and found to perform well compared to existing meth-
ods. In particular, it outperforms five existing causal
inference methods on our real data experiments. A
downside is the comparably high computational cost
due to the large number of required MCMC steps.
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Figure 4: Performance (percentage of correct causal inferences) of various causal inference methods for simulated
data with a non-linear function f . Rows correspond to the distribution of the cause, P (X). The three first
columns correspond to the distribution, P (E), of the additive noise term, with the x-axis referring to 3 different
standard deviations of the noise. The last column corresponds to non-additive noise, with the x-axis referring to
3 different frequencies of the sinusoidal wave (used to simulate non-additive noise).
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Figure 5: As in Fig. 4 but with a linear function f .
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